Lexical processing

Itamar Kastner

Morphology, UoE 2023-24

Start with an experiment:

https://www.youtube.com/watch?v=NRTFPPBZGnI

- Discuss one major issue of morphology in the psycholinguistic and neurolinguistic literature.
- Most studies ask whether words decompose into morphemes during language recognition and production.
- Some hypotheses suggest that decomposition varies depending on the "transparency" or "regularity" of the morphology.
- We'll look at evidence that words are decomposed no matter how "opaque" and "irregular".

Decomposition vs storage

- Storage: we store whole stems.
- **Decomposition**: we store smaller elements (morphemes) and decompose the input.
- A lot of work has been devoted to finding out where the line should be drawn.

Lexical decision

- Response Time \sim frequency + other stuff.
- Error rate (Accuracy) \sim + other stuff.
- The most robust measure we have.
 - What's the computation? Need a theory of the task.
 - For morphology, is it about lookup? Combination of stem and affix?
 - Do we need a theory of storage or of retrieval?

► What affects the speed with which we react to *predictable*?

Lexical decision

- Response Time \sim frequency + other stuff.
- Error rate (Accuracy) \sim + other stuff.
- The most robust measure we have.
 - What's the computation? Need a theory of the task.
 - For morphology, is it about lookup? Combination of stem and affix?
 - Do we need a theory of storage or of retrieval?

► What affects the speed with which we react to *predictable*?

Affix stripping: Taft (1979)

Decomposition, lookup and recombination can be affected by:

- Surface frequency.
- Base frequency.
- Their combination.

Affix stripping: Taft (1979)

Decomposition, lookup and recombination can be affected by:

- Surface frequency.
- **Base** frequency.
- Their combination.

Priming

- Prime and target.
- Masked priming.
- Identity prime.
- Semantic prime.
- Orthographic prime.

Does nation prime national?

Storage

- Yes!
 - Similar phonology.
 - Similar semantics.

Decomposition

- Yes!
 - Decompose *national* to *nation+al*.
 - Identity priming for nation.

> So we need a different technique: **masked** priming. https://www.youtube.com/watch?v=4XrlU3MEqbQ

Does nation prime national?

Storage Yes! Similar phonology. Similar semantics.

Decomposition

• Yes!

- Decompose *national* to *nation+al*.
- Identity priming for nation.

So we need a different technique: masked priming. https://www.youtube.com/watch?v=4XrlU3MEqbQ

Does nation prime national?

Storage

- Yes!
 - Similar phonology.
 - Similar semantics.

Decomposition

- Yes!
 - Decompose *national* to *nation+al*.
 - Identity priming for *nation*.

So we need a different technique: masked priming. https://www.youtube.com/watch?v=4Xr1U3MEqbQ

Does nation prime national?

Storage

- Yes!
 - Similar phonology.
 - Similar semantics.

Decomposition

- Yes!
 - Decompose *national* to *nation+al*.
 - Identity priming for *nation*.

► So we need a different technique: masked priming. https://www.youtube.com/watch?v=4XrlU3MEqbQ

Behavioral findings: Rastle et al. (2000)

How can we disentangle semantics, phonology and form?

• Stimuli are obligatorily (automatically) decomposed into stem and affix.

- Morpho \approx Identity.
- Morpho \neq Form + Meaning (phonesthemes).
- ► What about things that only look like affixes?

Behavioral findings: Rastle et al. (2000)

How can we disentangle semantics, phonology and form?

- Stimuli are obligatorily (automatically) decomposed into stem and affix.
- Morpho \approx Identity.
- Morpho \neq Form + Meaning (phonesthemes).
- ► What about things that only look like affixes?

Obligatory	decomposition
------------	---------------

✓	Semantic:	<i>clean<mark>er</mark> –</i> CLEAN
\checkmark	Psuedo-morphological:	<i>corner</i> – CORN
×	Form:	brothel – BROTH

- *brother* primes BROTH.
- *brothel* does not prime BROTH.
- Readers identify the visual form of the suffix -er.

► How far can we stretch this? What about irregular morphology?

Obligatory decomposition

\checkmark	Semantic:	cleaner – CLEAN
\checkmark	Psuedo-morphological:	<i>corner</i> – CORN
X	Form:	brothel – BROTH

- brother primes BROTH.
- *brothel* does not prime BROTH.
- Readers identify the visual form of the suffix -er.

► How far can we stretch this? What about irregular morphology?

Behavioral findings: Priming for Irregulars?

No: Marslen-Wilson et al (1993)

• Cross-modal priming: taught does not prime TEACH.

	Prime (auditory)	Target (visual)	Facilitation (in comparison to unrelated control)
Regular verbs	walk	walk	Yes
	walked	walk	Yes
Irregular verbs	give	give	Yes
	gave	give	No

Yes: Marslen-Wilson and Tyler (1998)

• Long-lag priming: *taught* does prime TEACH.

- Suffixed nouns and adjectives are decomposed.
- Observation Decomposition is obligatory.
- Unclear from behavioral methods whether irregular verbs are decomposed.

MEG background

Magnetic field

Electric potential

MEG background

Magnetic field

Electric potential

MEG background: Priming in Irregular Verbs

Stockall and Marantz (2006)

• Overt priming using MEG.

Condition		MEG			RT	
	Rel.(SD)	Unrel.(SD)	Dif.	Rel.(SD)	Unrel.(SD)	Dif.
Identity	323.2(31.3)	354.9(26.2)	-31.7*	603.4(138)	665.9(171.1)	-62.5**
Hi-O Irr						
(eg. gave–give)	347.6(25.6)	374.1(48.2)	-26.5*	586.9(124.3)	605.6(142)	-18.7*
Lo-O Irr						
(eg. taught-teach)	338.7(57.4)	371.1(41.8)	-32.4*	619.5(184.4)	606.5(151.9)	13
Ortho-O						
(eg. stiff-staff)	343.1(28.9)	359.2(26.9)	-16.1	664.7(192.6)	637.1(162.5)	27.6*

- Finding: Priming for irregulars, including *taught* priming TEACH.
- Their explanation: $[\sqrt{\text{TEACH}} + \text{Past}]$ primes $\sqrt{\text{TEACH}}$.

Stockall and Marantz (2006)

• Overt priming using MEG.

Condition		MEG			RT	
	Rel.(SD)	Unrel.(SD)	Dif.	Rel.(SD)	Unrel.(SD)	Dif.
Identity	323.2(31.3)	354.9(26.2)	-31.7*	603.4(138)	665.9(171.1)	-62.5**
Hi-O Irr						
(eg. gave–give)	347.6(25.6)	374.1(48.2)	-26.5*	586.9(124.3)	605.6(142)	-18.7*
Lo-O Irr						
(eg. taught-teach)	338.7(57.4)	371.1(41.8)	-32.4*	619.5(184.4)	606.5(151.9)	13
Ortho-O						
(eg. stiff-staff)	343.1(28.9)	359.2(26.9)	-16.1	664.7(192.6)	637.1(162.5)	27.6*

- Finding: Priming for irregulars, including *taught* priming TEACH.
- Their explanation: $[\sqrt{\text{TEACH}} + \text{Past}]$ primes $\sqrt{\text{TEACH}}$.

- Suffixed nouns and adjectives are decomposed.
- Observation Decomposition is obligatory.
- Irregular verbs are decomposed.
- On we predict how much?

Which stem is -able more likely to appear after?

formidable

taxable

- taxable, taxing, taxes, taxation, ...
- formidable, ...?

Transition probabilities

- **Transition probability**: the probability of having *-able* after *tax* or *formid*.
- tax-able, formid-able.
- Contrast with orthographic *axab*, *idab*.

- Transition Probability: the **probability** of an affix given its stem.
- TP(formidable) > TP(taxable).
- M170, a neural response originating at the fusiform gyrus, is sensitive to TP.

- taxable, taxing, taxes, taxation, ...
- formidable, ...?

Transition probabilities

- **Transition probability**: the probability of having *-able* after *tax* or *formid*.
- tax-able, formid-able.
- Contrast with orthographic *axab*, *idab*.

- Transition Probability: the **probability** of an affix given its stem.
- TP(formidable) > TP(taxable).
- M170, a neural response originating at the fusiform gyrus, is sensitive to TP.

- taxable, taxing, taxes, taxation, ...
- formidable, ...?

Transition probabilities

- **Transition probability**: the probability of having *-able* after *tax* or *formid*.
- tax-able, formid-able.
- Contrast with orthographic *axab*, *idab*.

- Transition Probability: the **probability** of an affix given its stem.
- TP(formidable) > TP(taxable).
- M170, a neural response originating at the fusiform gyrus, is sensitive to TP.

- taxable, taxing, taxes, taxation, ...
- formidable, ...?

Transition probabilities

- **Transition probability**: the probability of having *-able* after *tax* or *formid*.
- tax-able, formid-able.
- Contrast with orthographic *axab*, *idab*.

- Transition Probability: the **probability** of an affix given its stem.
- TP(formidable) > TP(taxable).
- M170, a neural response originating at the fusiform gyrus, is sensitive to TP.

M170 effect (Solomyak and Marantz 2009)

- Materials: words suffixed with -able, -ate, ic, ...
- Transition probability modulates activation in the Visual Word Form Area.

- Neural correlate of decomposition.
- TP(*formidable* > TP(*taxable*)
- M170(formidable) > M170(taxable).

► What about the *brother* items?

(Solomyak and Marantz 2010)

Psuedo-affixes show M170 effects

- Even with pseudo-affixes.
- Brother, lotion, ration, magic, barber, final, ...

► Converging behavioral and MEG evidence for obligatory decomposition.

(Lewis et al. 2011)

Transition probabilities: M170 and M350

We can even isolate different lexical statistic measures.

Lewis et al (2011)

- Lotion, ration, magic, barber, final, ...
- TP in M170: M170(formidable) > M170(taxable)

• Base frequency in M350: M350(taxable) > M350(formidable)

20/33

Regularity in Irregulars

Back now to irregular verbs:

- We have evidence that they are decomposed.
- We have measures for neural correlates of decomposition.
- We need measures for irregular verbs.

Albright and Hayes (2003)

- Past tense nonce words.
 - blafe: blafed / bleft?
 - bredge: bredged / broge?
 - chake: chaked / chook?
 - fleep: fleeped / flept?

	AlbrightScore	Related Forms
bleed-bled	0.71	breed-bred, lead-led, read-read
smite-smote	0.21	write-wrote
ask-asked	0.97	walk-walked, park-parked, mark-marked, talk-talked,

Tying it all together

Return to irregular verbs: does *taught* prime TEACH in masked priming? Fruchter et al. (2013): **yes**. Priming found in M170 (and M350).

Tying it all together

Return to irregular verbs: does *taught* prime TEACH in masked priming? Fruchter et al. (2013): **yes**. Priming found in M170 (and M350).

Tying it all together

Return to irregular verbs: does *taught* prime TEACH in masked priming? Fruchter et al. (2013): **yes**. Priming found in M170 (and M350).

Infixation in Tagalog

Obligatory decomposition

- Complex forms (stem+affix) are decomposed.
- We seem to encode what affixes our language has.
- What if the affix is an infix?

Tagalog has prefixes, suffixes and infixes (Cayado 2023; Cayado et al. 2023):

Condition	Target	Related Prime	Unrelated Prime
INF	TAWAG 'call'	tinawag 'called'	sumbong 'complain'
PREF	LUNOD 'drown'	nilunod 'drowned'	seryoso 'serious'
SUF	BASAG 'to break'	basagin 'to break'	alangan 'uncertain'
SemCon	SIPON 'cold'	lagnat 'fever'	bantay 'guard'
OrthCon	TUMPAK 'correct'	sapak 'punch'	unggoy 'monkey'

Infixation in Tagalog

(Cayado 2023)

24/33

Tagalog infixation and pseudo-infixation: where should we get priming? (Wray et al. 2022; Cayado 2023)

a.	subok	'try'	sinubok	'tried'
b.	gulat	'surprise'	ginulat	'shocked someone'
c.	*noŋ	_	ninoŋ	'godfather'
d.	* mistro	_	ministro	'ministry'

Infixation in Tagalog

Tagalog infixation and pseudo-infixation: where should we get priming?

(Wray et al. 2022; Cayado 2023)

a.	subok	'try'	sinubok	'tried'
b.	gulat	'surprise'	ginulat	'shocked someone'
c.	*noŋ	—	ninoŋ	'godfather'
d.	* mistro	_	ministro	'ministry'

real infixed words

pseudo-infixed' words

➤ See Wray et al. (2022) for discussion of the M170 in Tagalog infixes, pseudo-infixes and reduplication.

We've seen converging evidence that morphologically complex forms are decomposed into constituent morphemes.

There's a wealth of work on processing Semitic.

(Frost et al. 1997, 2000; Deutsch et al. 1998, 2000, 2003, 2005; Deutsch and Meir 2011; Velan et al. 2005; Bick et al. 2008, 2010; Boudelaa and Marslen-Wilson 2005, 2011; Boudelaa et al. 2010; Twist 2006; Ussishkin and Twist 2009; Ussishkin et al. 2011; Schluter 2013; Ussishkin et al. 2015; Moscoso del Prado Martín et al. 2005; Gwilliams and Marantz 2015; Farhy et al. 2018)

Main findings: robust root priming and some template priming.

What does this look like? How abstract can the representation of these morphemes be?

Work by Deutsch, Frost and colleagues:

1	Root priming:	התלבש	_	הלביש
		hit <mark>l</mark> abe <mark>f</mark>		he <mark>lb</mark> if
		'got dressed'		'dressed someone up'
\checkmark	Template priming:	הסריט	_	ה ספ י ק
		he sr i t		hespik
		'filmed'		'sufficed'
X	Pattern priming:	 ת קל י ט	_	תרגיל
		ta kl i t		TARGIL
		'record'		'exercise'
?	Abstract template	 צלל	_	רחק
		tsalal		raxats
		'dove'		'washed'
	1 , ,	1 1 1 1 1 1 1		1/, 1,

Three characters aren't enough to identify the verb/template:

- 💶 basar בשר
- 🔹 halax הלך
- 🚳 katan קטן

Work by Deutsch, Frost and colleagues:

1	Root priming:	התלבש	_	הלביש
		hit l a b e f		he lb if
		'got dressed'		'dressed someone up'
\checkmark	Template priming:	<mark>ה</mark> סר י ט	—	הספיק
		he sr i t		hespik
		'filmed'		'sufficed'
X	Pattern priming:	 ת קל י ט	_	תרגיל
		ta kl i t		TARGIL
		'record'		'exercise'
?	Abstract template	צלל צלל	_	רחק־
		tsalal		raxats
		'dove'		'washed'

Three characters aren't enough to identify the verb/template:

- 💶 basar בשר
- 💿 halax הלך
- 🚳 katan קטן

Work by Deutsch, Frost and colleagues:

1	Root priming:	התלבש	_	הלביש
		hit l a b e f		he lb if
		'got dressed'		'dressed someone up'
\checkmark	Template priming:	הסריט	—	ה ספיק
		he sr i t		he sp i k
		'filmed'		'sufficed'
×	Pattern priming:	 תקל י ט	_	תרגיל
		<mark>ta</mark> kl i t		TA RG I L
		'record'		'exercise'
?	Abstract template	ב ב ב ב ב ב ב ב ב ב ב ב ב ב ב ב ב ב ב	_	רחק
		tsalal		raxats
		'dove'		'washed'

Three characters aren't enough to identify the verb/template:

- 💶 basar בשר
- alax הלך
- 🚳 katan קטן

Work by Deutsch, Frost and colleagues:

nitladej neldij	
'got dressed' 'dressed someon	e up'
√ Template priming: הספיק – הסריט	
hesrit hespik	
'filmed' 'sufficed'	
X Pattern priming: תרגיל – תקליט	
taklit TARGIL	
'record' 'exercise'	
? Abstract template צלל – אלל – רחץ	
ts <i>alal raxa</i> ts	
'dove' 'washed'	

Three characters aren't enough to identify the verb/template:

- 💶 basar בשר
- 💿 halax הלך
- 🚳 katan קטן

Work by Deutsch, Frost and colleagues:

1	Root priming:	התלבש	_	הלביש
		hit l a b e∫		he lb i ∫
		'got dressed'		'dressed someone up'
\checkmark	Template priming:	הסריט	—	הספיק
		he sr i t		hespik
		'filmed'		'sufficed'
X	Pattern priming:	 ת קל י ט	_	תרגיל
		ta kl i t		TARGIL
		'record'		'exercise'
?	Abstract template	צלל	_	רחק
		tsalal		raxats
		'dove'		'washed'

Three characters aren't enough to identify the verb/template:

- 💶 basar בשר
- 💿 halax הלך
- 🗿 katan קטן

What we know:

- Affixes are obligatorily decomposed.
- M170 tracks decomposition.
- 8 Roots are primed.
- Templates are primed (sometimes).

Hypotheses

- A Visual word decomposition only tracks overt forms/morphemes.
- B Visual word decomposition tracks abstract morphemes as well.

Methods (Kastner et al. 2018)

- Visual lexical decision using MEG.
- Masked priming, SOA = 33ms.
- N = 21 native speakers of Hebrew.
- 42 verbal targets in *XaYaZ*, matched with primes.

What we know:

- Affixes are obligatorily decomposed.
- M170 tracks decomposition.
- Soots are primed.
- Templates are primed (sometimes).

Hypotheses

- A Visual word decomposition only tracks overt forms/morphemes.
- B Visual word decomposition tracks abstract morphemes as well.

Methods (Kastner et al. 2018)

- Visual lexical decision using MEG.
- Masked priming, SOA = 33ms.
- N = 21 native speakers of Hebrew.
- 42 verbal targets in *XaYaZ*, matched with primes.

What we know:

- Affixes are obligatorily decomposed.
- M170 tracks decomposition.
- S Roots are primed.
- Templates are primed (sometimes).

Hypotheses

- A Visual word decomposition only tracks overt forms/morphemes.
- B Visual word decomposition tracks abstract morphemes as well.

Methods (Kastner et al. 2018)

- Visual lexical decision using MEG.
- Masked priming, SOA = 33ms.
- N = 21 native speakers of Hebrew.
- 42 verbal targets in *XaYaZ*, matched with primes.

Materials

	Shared Template			Shared Root			
	Ortho	Phono	Gloss	Ortho	Phono	Gloss	
Related	צלל	tsalal	'dove'	התרחץ	hitraxets 'washed himself		
Unrelated	בשר	basar	'meat'	התלבש	hitlabe∫ 'dressed up'		
Target	רחץ rax		ats washed (transitive)				

- All strings were unambiguous.
- Unrelated Shared Template prime ('meat'): adjectives and nouns.
- Ssyntactic category cannot be known from the orthography or phonology alone.

Results

Shared template

- Significant effect of Relatedness.
- *p* < 0.01.
- 177-219ms.
- Novel result: verbs in *XaYaZ* prime other verbs in *XaYaZ*.

- Replicated findings for root and template priming in *heXYiZ* (not shown).
- No root priming in this template, as noted in the behavioral literature before (remains mysterious).

Full experimental design

Experiment 1: heXYiZ

Decision (keypress)

Shared Template

Shared Root

Experiment 2: XaYaZ

*****						500ms		
	Template (categor	ry) companison		Root comparis	on Argumen	I shuckure comparison		
Condition	+T -Rt -AS	-4		-T +Rt -AS	-T -Rt -AS	-T -Rt +AS		
Orthography	371	16/2		התרחץ	התלבש	האריך		
Transilteration	CLL	857		HTRIC	HTLRS	HARRIX	33m	5
Pronunciation	ranka/	Dasar		hitarets	hillabed	helatik		
Translation	dove	meat.		washed himself	dressed up	extended)	
				Tanget ym noc noodd washed (something	1			
				Decision (keypress	0			

Shared Template

Itamar Kastner

Lexical processing

Morphology, UoE 2023-24 30 / 33

Discussion

Implications:

- If a Hebrew string XYZ can be immediately parsed into $[\sqrt{xyz} v]$, it is.
- Abstract v may then be primed again, even if it is covert.
- $\Rightarrow~$ Support for Hypothesis B: readers recognize abstract morphemes too.

In general:

- In line with the literature on form-based masked priming.
- Provides an explanation for masked priming results beyond matching of overt forms.
- \Rightarrow Beyond "priming morphemes": experimental findings only make sense given a theory of the task (a linking theory).

Discussion

Implications:

- If a Hebrew string XYZ can be immediately parsed into $[\sqrt{xyz} v]$, it is.
- Abstract v may then be primed again, even if it is covert.
- $\Rightarrow~$ Support for Hypothesis B: readers recognize abstract morphemes too.

In general:

- In line with the literature on form-based masked priming.
- Provides an explanation for masked priming results beyond matching of overt forms.
- \Rightarrow Beyond "priming morphemes": experimental findings only make sense given a theory of the task (a linking theory).

Additional references

- Work in this general approach:
 - Prefix/particle priming: Creemers et al. (2020)
 - Plural affix priming: Davies and Embick (2019)
 - Auditory priming: Schluter (2013); Ussishkin et al. (2015)
 - Rhyme auditory priming: Bacovcin et al. (2017)
 - Argument structure: Gwilliams and Marantz (2018); Neophytou et al. (2018)
 - Nouns vs verbs: King et al. (To appear)
 - Insights from Tagalog (infixation, reduplication): Wray et al. (2022); Cayado (2023); Cayado et al. (2023)
- One alternative view: Baayen et al. (2011, 2015); Marantz (2013)
- Word processing in a syntactic context: Luke and Christianson (2011)
- Overviews: Crepaldi (2023); Stockall and Gwilliams (submitted)

- Discuss one major issue of morphology in the psycholinguistic and neurolinguistic literature.
- Most studies ask whether words decompose into morphemes during language recognition and production.
- Some hypotheses suggest that decomposition varies depending on the "transparency" or "regularity" of the morphology.
- We looked at evidence that words are decomposed no matter how "opaque" and "irregular".
- Even when the morphemes are complex or abstract, e.g. infixes in Tagalog and verbalizers in Hebrew.

References I

- Baayen, R. H., P. Milín, D. F. Durdević, P. Hendrix, and M. Marelli. 2011. An amorphous model for morphological processing in visual comprehension based on naive discriminative learning. *Psychological Review* 118:438–481.
- Baayen, R. Harald, Cyrus Shaoul, Jon Willits, and Michael Ramscar. 2015. Comprehension without segmentation: a proof of concept with naive discriminative learning. Language, Cognition and Neuroscience 31:106–128.
- Bacovcin, Hezekiah Akiva, Amy Goodwin Davies, Robert J. Wilder, and David Embick. 2017. Auditory morphological processing: Evidence from phonological priming. Cognition 164:102–106.
- Bick, Atira S., Ram Frost, and Gadi Goelman. 2010. Imaging implicit morphological processing: Evidence from Hebrew. Journal of Cognitive Neuroscience 22:1955–1969.
- Bick, Atira S., Gadi Goelman, and Ram Frost. 2008. Neural correlates of morphological processes in Hebrew. Journal of Cognitive Neuroscience 20:406–420.
- Boudelaa, Sami, and William Marslen-Wilson. 2005. Discontinuous morphology in time: Incremental masked priming in Arabic. Language and Cognitive Processes 20:207–260.
- Boudelaa, Sami, and William Marslen-Wilson. 2011. Productivity and priming: Morphemic decomposition in Arabic. Language and Cognitive Processes 26:624–652.
- Boudelaa, Sami, Friedemann Pulvermüller, Olaf Hauk, Yury Shtyrov, and William Marslen-Wilson. 2010. Arabic Morphology in the Neural Language System. Journal of Cognitive Neuroscience 22:998–1010.
- Cayado, Dave Kenneth Tayao. 2023. Towards a more flexible model of morphological decomposition: The case of Tagalog morphology. Doctoral Dissertation, QMUL, London.
- Cayado, Dave Kenneth Tayao, Samantha Wray, and Linnaea Stockall. 2023. Does linear position matter for morphological processing? Evidence from a Tagalog masked priming experiment. Language, Cognition and Neuroscience 1–16. URL https://doi.org/10.1080/2F23273798.2023.2216813.
- Creemers, Ava, Amy Goodwin Davies, Robert J. Wilder, Meredith Tamminga, and David Embick. 2020. Opacity, transparency, and morphological priming: A study of prefixed verbs in Dutch. Journal of Memory and Language 110:104055. URL http://dx.doi.org/10.1016/j.jml.2019.104055.
- Crepaldi, Davide, ed. 2023. Linguistic morphology in the mind and brain. Routledge.
- Davies, Amy Goodwin, and David Embick. 2019. The representation of plural inflectional affixes in English: evidence from priming in an auditory lexical decision task. Language, Cognition and Neuroscience 35:393–401.
- Deutsch, Avital, Ram Frost, and Kenneth I. Forster. 1998. Verbs and nouns are organized and accessed differently in the mental lexicon: Evidence from Hebrew. *Journal of Experimental Psychology: Learning, Memory and Cognition* 24:1238–1255.

References II

- Deutsch, Avital, Ram Frost, Sharon Pelleg, Alexander Pollatsek, and Keith Rayner. 2003. Early morphological effects in reading: Evidence from parafoveal preview benefit in Hebrew. Psychonomic Bulletin and Review 10:415–422.
- Deutsch, Avital, Ram Frost, Alexander Pollatsek, and Keith Rayner. 2000. Early morphological effects in word recognition in Hebrew: Evidence from parafoveal preview benefit. Language and Cognitive Processes 15:487–506.
- Deutsch, Avital, Ram Frost, Alexander Pollatsek, and Keith Rayner. 2005. Morphological parafoveal preview benefit effects in reading: Evidence from Hebrew. Language and Cognitive Processes 20:341–371.
- Deutsch, Avital, and Adi Meir. 2011. The role of the root morpheme in mediating word production in Hebrew. Language and Cognitive Processes 26:716-744.
- Farhy, Yael, João Veríssimo, and Harald Clahsen. 2018. Universal and particular in morphological processing: Evidence from Hebrew. The Quarterly Journal of Experimental Psychology 71:1125–1133.
- Frost, Ram, Avital Deutsch, and Kenneth I. Forster. 2000. Decomposing morphologically complex words in a nonlinear morphology. Journal of Experimental Psychology: Learning, Memory and Cognition 26:751–765.
- Frost, Ram, Kenneth I. Forster, and Avital Deutsch. 1997. What can we learn from the morphology of Hebrew? A masked-priming investigation of morphological representation. Journal of Experimental Psychology: Learning, Memory, and Cognition 23:829–856.
- Fruchter, Joseph, Linnaea Stockall, and Alec Marantz. 2013. MEG masked priming evidence for form-based decomposition of irregular verbs. Frontiers in Human Neuroscience 7:1–16.
- Gwilliams, Laura, and Alec Marantz. 2015. Non-linear processing of a linear speech stream: The influence of morphological structure on the recognition of spoken Arabic words. Brain and Language 147:1–13.
- Gwilliams, Laura, and Alec Marantz. 2018. Morphological representations are extrapolated from morpho-syntactic rules. *Neuropsychologia*. Kastner, Itamar, Liina Pylkkänen, and Alec Marantz. 2018. The form of morphemes: MEG evidence from masked priming of two Hebrew
- templates. Frontiers in Psychology 9.
- King, Joseph, Tal Linzen, and Alec Marantz. To appear. Syntactic categories as lexical features or syntactic heads: An MEG approach. Linguistic Inquiry .
- Lewis, Gwyneth, Olla Solomyak, and Alec Marantz. 2011. The neural basis of obligatory decomposition of suffixed words. Brain and Language 118:118–127.
- Luke, Steven G., and Kiel Christianson. 2011. Stem and whole-word frequency effects in the processing of inflected verbs in and out of a sentence context. Language and Cognitive Processes 26:1173–1192.
- Marantz, Alec. 2013. No escape from morphemes in morphological processing. Language and Cognitive Processes 28:905-916.
- Neophytou, K, C. Manouilidou, L. Stockall, and A. Marantz. 2018. Syntactic and semantic restrictions on morphological recomposition: MEG evidence from Greek. Brain and Language 183:11–20.

References III

- Moscoso del Prado Martín, Fermín, Avital Deutsch, Ram Frost, Robert Schreuder, Nivja H. De Jong, and R. Harald Baayen. 2005. Changing places: A cross-language perspective on frequency and family size in Dutch and Hebrew. *Journal of Memory and Language* 53:496–512. Rastle, Kathleen, Matthew H. Davis, William D. Marslen-Wilson, and L.K. Tyler. 2000. Morphological and semantic effects in visual word recognition: A time-course study. *Language and Cognitive Processes* 15:507–537.
- Rastle, Kathleen, Matthew H. Davis, and Boris New. 2004. The broth in my brother's brothel: morpho-orthographic segmentation in visual word recognition. Psychonomic Bulletin and Review 11:1090–1098.
- Schluter, Kevin. 2013. Hearing words without structure: subliminal speech priming and the organization of the Moroccan Arabic lexicon. Doctoral Dissertation, University of Arizona.
- Solomyak, Olla, and Alec Marantz. 2010. Evidence for early morphological decomposition in visual word recognition. Journal of Cognitive Neuroscience 22:2042–2057.
- Stockall, Linnaea, and Laura Gwilliams. submitted. Distributed Morphology and neurolinguistics. In The Cambridge handbook of Distributed Morphology, ed. Artemis Alexiadou, Ruth Kramer, Alec Marantz, and Isabel Oltra Massuet. Cambridge: Cambridge University Press.
- Stockall, Linnaea, and Alec Marantz. 2006. A single route, full decomposition model of morphological complexity: MEG evidence. The Mental Lexicon 1:85–123.
- Taft, Marcus. 1979. Recognition of affixed words and the word frequency effect. Memory and Cognition 7:263-272.
- Twist, Alina. 2006. A psycholinguistic investigation of the verbal morphology of Maltese. Doctoral Dissertation, University of Arizona.
- Ussishkin, Adam, Colin Reimer Dawson, Andrew Wedel, and Kevin Schluter. 2015. Auditory masked priming in Maltese spoken word recognition. Language, Cognition and Neuroscience 30:1096–1115.
- Ussishkin, Adam, and Alina Twist. 2009. Auditory and visual lexical decision in Maltese. In Introducing Maltese linguistics: Selected papers from the 1st International Conference on Maltese Linguistics, ed. Bernard Comrie, 233–249. Benjamins.
- Ussishkin, Adam, Andrew Wedel, Kevin Schluter, and Colin Dawson. 2011. Supraliminal and subliminal root and binyan priming in Maltese. In The 3rd International Conference on Maltese Linguistics.
- Velan, Hadas, Ram Frost, Avital Deutsch, and David C. Plaut. 2005. The processing of root morphemes in Hebrew: Contrasting localist and distributed accounts. Language and Cognitive Processes 20:169–206.
- Wray, Samantha, Linnaea Stockall, and Alec Marantz. 2022. Early form-based morphological decomposition in Tagalog: MEG evidence from reduplication, infixation, and circumfixation. Neurobiology of Language 3:235–255. URL http://dx.doi.org/10.1162/nol_a_00062.